
DC-DC 1/2砖 隔离转换器



# 产品特点

- ◆宽输入电压范围: 2:1
- ◆效率高达 90%
- ◆低空载功耗
- ◆工作温度范围: -40℃ to +105℃
- ◆高绝缘电压: 输入-输出 1500VDC, 输入-外壳 1500VDC
- ◆输入欠压保护,输出过流、过压、过温、短路保护
- ◆标准 1/2 砖

MDH350-48S30 是一款高性能半砖标准模块电源,额定输入电压 48VDC. 输出 30V/350W,无最小负载要求,宽电压输入 36-75VDC. 稳压单路输出。高隔离绝缘电压,允许工作温度高达 105℃,具有输入欠压保护、输出过流保护、过压保护、过温保护、短路保护、远程遥控及远端补偿、输出电压调节等功能。

| 选型表            |       |      |       |      |       |          |        |
|----------------|-------|------|-------|------|-------|----------|--------|
| 产品型号           | 输入范围  | 输出功率 | 输出电压  | 输出电流 | 纹波&噪声 | 满载效率(%)  | 备注     |
|                | (VDC) | (W)  | (VDC) | (A)  | (mV)  | Min/Typ. | 田江     |
| MDH350-48S30   |       |      | 30    | 11.6 | 300   | 88/90    | 标准型正逻辑 |
| MDH350-48S30N  | 26.75 | 350  |       |      |       |          | 标准型负逻辑 |
| MDH350-48S30H  | 36-75 |      |       |      |       |          | 散热器正逻辑 |
| MDH350-48S30NH |       |      |       |      |       |          | 散热器负逻辑 |

| 输入特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |      |      |      |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|------|------|----------|
| 项目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 工作条件                                    | Min. | Тур. | Max. | 单位       |
| 最大输入电流                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36V 输入电压,满载输出                           |      |      | 12   | Α        |
| 空载输入电流                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 额定输入电压                                  |      |      | 50   | mA       |
| 输入冲击电压(1sec. max.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 超出该范围输入可能会造成永久性的损坏                      | -0.7 |      | 100  |          |
| 启动电压                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |      |      | 36   | VDC      |
| 输入欠压保护                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 空载测试,满载测试会提前过流保护                        |      |      | 34   |          |
| で<br>な<br>い<br>の<br>は<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>。<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>。<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>に<br>る<br>に<br>る<br>に<br>る<br>に<br>。<br>に<br>る<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>に<br>る<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。<br>に<br>。 | 正逻辑: CNT 悬空或接 3.5-15V 开机, 接 0-1.2V 电压关机 |      |      |      | 参考电压-VIN |
| 遥控脚(CNT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 负逻辑: CNT 悬空或接 3.5-15V 关机, 接 0-1.2V 电压开机 |      |      |      |          |

| 输出特性             |                             |       |      |       |       |
|------------------|-----------------------------|-------|------|-------|-------|
| 项目               | 工作条件                        | Min.  | Тур. | Max.  | 单位    |
| 输出电压精度           | 标称输入电压,从 0%-100%的负载         |       | ±0.5 | ±1.0  |       |
| 线性调节率            | 满载,输入电压从低电压到高电压             |       | ±0.2 | ±0.5  | %     |
| 负载调节率            | 标称输入电压,从 10%-100%的负载        |       | ±0.2 | ±0.5  |       |
| 瞬态恢复时间           | 250/ 4 带队旺杰ル (队吐油枣 14 /50C) |       | 200  | 250   | uS    |
| 瞬态响应偏差           | 25%负载阶跃变化(阶跃速率 1A/50uS)     | -5    |      | 5     | %     |
| 温度漂移系数           | 满载                          | -0.02 |      | +0.02 | %/℃   |
| 纹波&噪声            | 20M 带宽,外接 220uF 以上电容测试      |       | 200  | 300   | mVp-p |
| 输出电压可调节 (TRIM)   |                             | -10   |      | +10   | %     |
| 输出电压远端补偿 (Sense) |                             |       |      | 105   | %     |

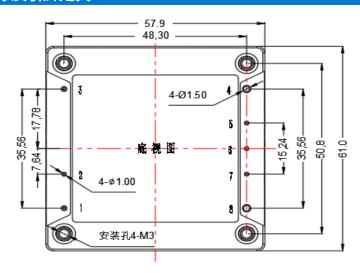


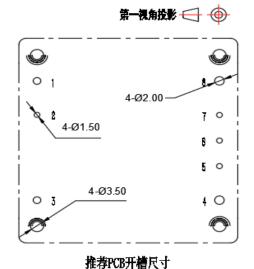
DC-DC 1/2砖

隔离转换器

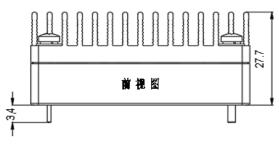
| 过温保护   | 产品金属基板表面最高温度 | 105  | 115  | 125    | ℃  |
|--------|--------------|------|------|--------|----|
| 输出过压保护 |              | 125  |      | 150    | %  |
| 输出过流保护 |              | 12.7 |      | 17     | Α  |
| 输出短路保护 |              |      | 打嗝式, | 可持续,自恢 | 友复 |

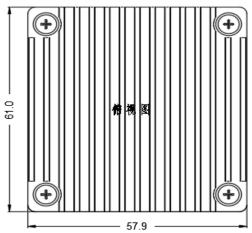
| 通用特性    |       |                     |     |      |      |         |
|---------|-------|---------------------|-----|------|------|---------|
| 项目      | 工作条件  | 工作条件                |     | Тур. | Max. | 单位      |
|         | 输入-输出 | 测试时间 1 分钟,漏电流小于 3mA |     |      | 1500 | VDC     |
| 隔离电压    | 输入-外壳 | 测试时间 1分钟,漏电流小于 3mA  |     |      | 1500 | VDC     |
|         | 输出-外壳 | 测试时间 1 分钟,漏电流小于 3mA |     |      | 500  | VDC     |
| 绝缘电阻    | 输入-输出 | 绝缘电压 <b>500VDC</b>  | 100 |      |      | MΩ      |
| 开关频率    |       |                     |     | 250  |      | KHz     |
| 平均无故障时间 |       |                     | 150 |      |      | K hours |

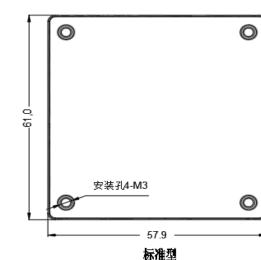

| 环境特性    |                           |                       |      |      |          |
|---------|---------------------------|-----------------------|------|------|----------|
| 项目      | 工作条件                      | Min.                  | Тур. | Max. | 单位       |
| 工作温度    | 见温度降额曲线                   | -40                   |      | +105 | <b>℃</b> |
| 存储湿度    | 无凝结                       | 5                     |      | 95   | %RH      |
| 存储温度    |                           | -40                   |      | +125 |          |
| 引脚耐焊接温度 | 焊点距离外壳 1.5mm, 焊接时间小于 1.5S |                       |      | +350 | °C       |
| 冷却要求    |                           | EN60068-2-1           |      |      |          |
| 干热要求    |                           | EN60068-2-2           |      |      |          |
| 湿热要求    |                           | EN60068-2-30          |      |      |          |
| 冲击和振动   |                           | IEC/EN 61373 车体 1 B 级 |      |      |          |


| EMC 特性  | (EN55032) |                 |                             |                  |
|---------|-----------|-----------------|-----------------------------|------------------|
|         | 传导骚扰      | EN55032-3-2     | 150kHz-500kHz 66dBuV        |                  |
| EMI     |           | EN55032-2-1     | 500kHz-30MHz 60dBuV         |                  |
| EIVII   | 辐射骚扰      | EN55032-3-2     | 30MHz-230MHz 50dBuV/m at 3m |                  |
| 神 知 強 抗 |           | EN55032-2-1     | 230MHz-1GHz 57dBuV/m at 3m  |                  |
|         | 静电放电      | IEC/EN61000-4-2 | Contact ±6KV/Air ±8KV       | perf. Criteria B |
|         | 辐射抗扰度     | IEC/EN61000-4-3 | 10V/m                       | perf. Criteria A |
| EMS     | 脉冲群抗扰度    | IEC/EN61000-4-4 | ±2kV 5/50ns 5kHz            | perf. Criteria A |
|         | 浪涌抗扰度     | IEC/EN61000-4-5 | line to line ± 2KV          | perf. Criteria B |
|         | 传导骚扰抗扰度   | IEC/EN61000-4-6 | 10 Vr.m.s                   | perf. Criteria A |

| 物理特性   |                                                     |
|--------|-----------------------------------------------------|
| 外壳材料   | 金属底壳+黑色阻燃材料外壳(UL94-V0)                              |
| 散热器    | 尺寸 <b>61*57.9*15mm</b> ,重量 <b>74g</b> ,铝合金材质,阳极氧化黑色 |
| 散热冷却方式 | 传导散热或者强制风冷                                          |
| 整机重量   | 标准型 115g,散热器型 192g                                  |


DC-DC 1/2砖隔离转换器

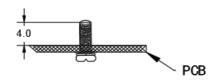

# 结构尺寸及引脚定义






前视图



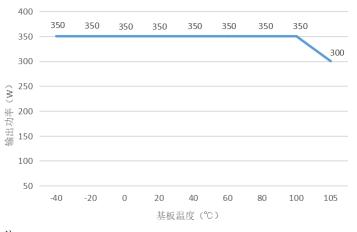


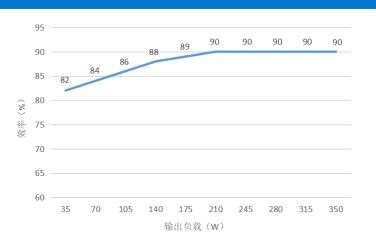



12,7

标准型+散热器 61.0\*57.9\*27.7mm

注: 尺寸单位: m m 2, 5, 6, 7 引脚直径: 1.00 1, 3, 4, 8 引脚直径: 1.50 公差: X.X±0.50mm X.XX±0.10mm 安装孔拧紧力矩: Max 0,4 N\*m





61, 0\*57, 9\*12, 7mm

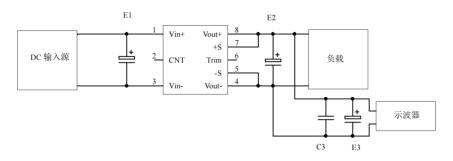
| 序号   | 1    | 2   | 3    | 4     | 5      | 6      | 7      | 8     |
|------|------|-----|------|-------|--------|--------|--------|-------|
| 管脚定义 | Vin+ | CNT | Vin- | Vout- | -S     | TRIM   | +S     | Vout+ |
| 功能   | 输入正极 | 遥控端 | 输入负极 | 输出负极  | 远端补偿负极 | 输出电压微调 | 远端补偿正极 | 输出正极  |

DC-DC 1/2砖 隔离转换器

# 产品特性曲线



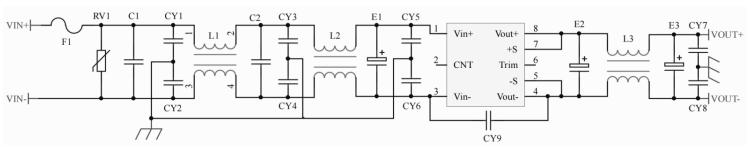



注:

- 1. 温度降额曲线和效率曲线均为典型值测试;
- 2. 温度降额曲线按照我司实验室测试条件进行测试,客户实际使用的环境条件如若不一致,需保证产品铝外壳温度不超 **105℃**,可在任意额定负载范围内使用。

# 设计参考

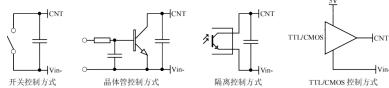
# 1. 纹波&噪声


所有该系列的 DC/DC 转换器在出厂前,均是按照下图推荐的测试电路进行测试。



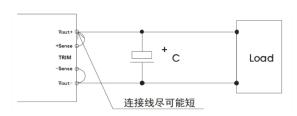
| 电容取值输出电压 | E1 ( µ F) | E2 ( µ F) | C3 ( µ F) | E3 ( µ F) |
|----------|-----------|-----------|-----------|-----------|
| 3. 3VDC  |           | 1000      |           |           |
| 5VDC     |           | 680       |           | 10        |
| 12VDC    | 100       |           | 1         |           |
| •••••    |           | 470       |           |           |
| 48VDC    |           |           |           |           |
| •••••    | 68        | 68        |           |           |
| 110VDC   | 08        | 08        |           |           |

### 2. 推荐应用电路


若客户未使用我司推荐电路时,输入端请务必并联一个至少 220 μF 的电解电容,用于抑制输入端可能产生的浪涌电压。



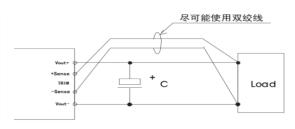
| F1                      | T20A/250V 保险管                  |
|-------------------------|--------------------------------|
| RV1                     | 14D 100V 压敏电阻                  |
| C1,C2                   | 105/250V 聚酯膜电容                 |
| CY1,CY2,CY3,CY4,CY5,CY6 | 102/250Vac 安规 Y2 电容            |
| CY7,CY8                 | 103/2KV 瓷片电容                   |
| CY9                     | 471/250Vac 安规 Y2 电容            |
| E1                      | 220μF/100V 电解电容                |
| E2, E3                  | 470μf/35V 电解电容                 |
| L1,L2                   | 电感量大于 3mH,过电流 12A 温升小于 25℃     |
| L3                      | 电感量大于 100uH,过电流 11.6A 温升小于 25℃ |


DC-DC 1/2**位** 隔离转换器

## 3. 遥控端 (CNT) 控制方式应用推荐



### 4. Sense 的使用以及注意事项


(1) 不使用远端补偿:



#### 注意事项:

- 1. 不使用远端补偿,确保 Vout+ 与 Sense+, Vout- 与 Sense-短接;
- 2. Vout+与 Sense+, Vout-与 Sense-之间的连线尽可能短,并靠近针脚,否则可能造成模块的不稳定。

#### (2) 使用远端补偿:



#### 注意事项:

- 1. 使用远端补偿引线较长时,可能导致输出电压不稳定;
- 2. 如果使用远端补偿,请使用双绞线或者屏蔽线,并使引线尽可能短;
- 3. 在电源模块和负载之间请使用宽 PCB 引线或粗线, 并保持线路电压降应低于 0.3V, 确保电源输出电压保持在指定的范围内;
- 4. 引线的阻抗可能造成输出电压振荡或者较大纹波,使用之前请做好验证。

### 5. TRIM 的使用以及 TRIM 电阻的计算

输出变化电压△U 和电阻关系如下:



# 6. 本产品不支持直接并联升功率使用,若需并联使用,请咨询我司技术人员

## 其它

- 1. 本产品保修期两年,期内任何正常使用损坏,免费修护。使用方法或制造技术错误而导致损坏,可以提供有偿服务。
- 2. 我司可提供产品定制及配套的滤波器模块,具体情况可直接与我司技术人员联系。